|
| 1 | +# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +# import inspect |
| 15 | +import os |
| 16 | +import sys |
| 17 | + |
| 18 | +import paddle |
| 19 | +from utils.argument import EmbeddingArgument |
| 20 | + |
| 21 | +from paddlenlp.data import DataCollatorForEmbedding |
| 22 | +from paddlenlp.datasets import EmbeddingIterableDataset, load_dataset |
| 23 | +from paddlenlp.trainer import PdArgumentParser, get_last_checkpoint, set_seed |
| 24 | +from paddlenlp.trainer.trainer_callback import TrainerState |
| 25 | +from paddlenlp.transformers import ( |
| 26 | + AutoConfig, |
| 27 | + AutoTokenizer, |
| 28 | + Qwen2Config, |
| 29 | + Qwen2SentenceEmbedding, |
| 30 | +) |
| 31 | +from paddlenlp.transformers.configuration_utils import LlmMetaConfig |
| 32 | +from paddlenlp.transformers.refined_recompute import update_refined_recompute |
| 33 | +from paddlenlp.trl import DataConfig, EmbeddingTrainer, ModelConfig, SFTConfig |
| 34 | +from paddlenlp.trl.llm_utils import compute_metrics, init_chat_template |
| 35 | +from paddlenlp.utils.log import logger |
| 36 | + |
| 37 | +# Fine-tune Environment Variables to support sharding stage1 overlap optimization. |
| 38 | +os.environ["USE_CASUAL_MASK"] = "False" |
| 39 | + |
| 40 | + |
| 41 | +def main(): |
| 42 | + parser = PdArgumentParser((ModelConfig, DataConfig, SFTConfig, EmbeddingArgument)) |
| 43 | + if len(sys.argv) >= 2 and sys.argv[1].endswith(".json"): |
| 44 | + model_args, data_args, training_args, embedding_args = parser.parse_json_file_and_cmd_lines() |
| 45 | + else: |
| 46 | + model_args, data_args, training_args, embedding_args = parser.parse_args_into_dataclasses() |
| 47 | + |
| 48 | + training_args.print_config(model_args, "Model") |
| 49 | + training_args.print_config(data_args, "Data") |
| 50 | + |
| 51 | + # Setup GPU & distributed training |
| 52 | + paddle.set_device(training_args.device) |
| 53 | + set_seed(seed=training_args.seed) |
| 54 | + logger.warning( |
| 55 | + f"Process rank: {training_args.local_rank}, device: {training_args.device}, world_size: {training_args.world_size}, " |
| 56 | + + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16 or training_args.bf16}" |
| 57 | + ) |
| 58 | + |
| 59 | + if training_args.pipeline_parallel_degree > 1: |
| 60 | + raise NotImplementedError("Cannot support pipeline parallel for Embedding training now.") |
| 61 | + |
| 62 | + # Detecting last checkpoint. |
| 63 | + last_checkpoint = None |
| 64 | + if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
| 65 | + last_checkpoint = get_last_checkpoint(training_args.output_dir) |
| 66 | + if last_checkpoint is not None and training_args.resume_from_checkpoint is None: |
| 67 | + logger.info( |
| 68 | + f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
| 69 | + "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
| 70 | + ) |
| 71 | + |
| 72 | + # Load model |
| 73 | + if training_args.fp16_opt_level == "O2": |
| 74 | + if training_args.fp16: |
| 75 | + dtype = "float16" |
| 76 | + elif training_args.bf16: |
| 77 | + dtype = "bfloat16" |
| 78 | + else: |
| 79 | + raise ValueError("Please specific dtype: --fp16 or --bf16") |
| 80 | + else: |
| 81 | + dtype = "float32" |
| 82 | + |
| 83 | + model_config = AutoConfig.from_pretrained( |
| 84 | + model_args.model_name_or_path, |
| 85 | + dtype=dtype, |
| 86 | + from_aistudio=model_args.from_aistudio, |
| 87 | + ) |
| 88 | + assert isinstance(model_config, Qwen2Config), "Now only qwen2 supported" |
| 89 | + |
| 90 | + LlmMetaConfig.set_llm_config(model_config, training_args) |
| 91 | + model_config.refined_recompute = update_refined_recompute(training_args.refined_recompute) |
| 92 | + model_config.use_fast_layer_norm = model_args.use_fast_layer_norm |
| 93 | + |
| 94 | + # Config for model using dropout, such as GPT. |
| 95 | + if hasattr(model_config, "hidden_dropout_prob"): |
| 96 | + model_config.hidden_dropout_prob = model_args.hidden_dropout_prob |
| 97 | + if hasattr(model_config, "attention_probs_dropout_prob"): |
| 98 | + model_config.attention_probs_dropout_prob = model_args.attention_probs_dropout_prob |
| 99 | + if hasattr(model_config, "ignore_index"): |
| 100 | + model_config.ignore_index = -100 |
| 101 | + |
| 102 | + if model_args.fuse_attention_qkv is not None: |
| 103 | + model_config.fuse_attention_qkv = model_args.fuse_attention_qkv |
| 104 | + if model_args.fuse_attention_ffn is not None: |
| 105 | + model_config.fuse_attention_ffn = model_args.fuse_attention_ffn |
| 106 | + |
| 107 | + model_config.seq_length = data_args.max_length |
| 108 | + model_config.embedding_negatives_cross_device = embedding_args.embedding_negatives_cross_device |
| 109 | + logger.info(f"Final model config: {model_config}") |
| 110 | + |
| 111 | + model_class = Qwen2SentenceEmbedding |
| 112 | + |
| 113 | + if model_args.continue_training and not training_args.autotuner_benchmark: |
| 114 | + model = model_class.from_pretrained( |
| 115 | + model_args.model_name_or_path, |
| 116 | + config=model_config, |
| 117 | + from_aistudio=model_args.from_aistudio, |
| 118 | + ) |
| 119 | + else: |
| 120 | + model = model_class.from_config(model_config, dtype=dtype) |
| 121 | + |
| 122 | + if model_args.flash_mask and (not data_args.zero_padding or not model.config.use_flash_attention): |
| 123 | + logger.warning("`flash_mask` must use with zero padding and flash attention.") |
| 124 | + data_args.zero_padding = True |
| 125 | + model.config.use_flash_attention = True |
| 126 | + |
| 127 | + # Load tokenizer & dataset |
| 128 | + tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, from_aistudio=model_args.from_aistudio) |
| 129 | + |
| 130 | + # init chat_template for tokenizer |
| 131 | + init_chat_template(tokenizer, model_args.model_name_or_path, data_args.chat_template) |
| 132 | + |
| 133 | + # if using chat_template, data_args.eval_with_do_generation must be false |
| 134 | + if tokenizer.chat_template is not None: |
| 135 | + data_args.eval_with_do_generation = False |
| 136 | + |
| 137 | + if training_args.do_eval: |
| 138 | + logger.warning("Warning: 'do_eval' is set to True, but will be set to False for Embedding training currently.") |
| 139 | + training_args.do_eval = False |
| 140 | + training_args.evaluation_strategy = "no" |
| 141 | + |
| 142 | + if data_args.dataset_name_or_path is None: |
| 143 | + raise ValueError(f"Please specific dataset name or path (got {data_args.dataset_name_or_path})") |
| 144 | + elif os.path.exists(os.path.join(data_args.dataset_name_or_path, "train.json")) or os.path.exists( |
| 145 | + os.path.join(data_args.dataset_name_or_path, "dev.json") |
| 146 | + ): |
| 147 | + if training_args.do_train: |
| 148 | + train_ds = load_dataset( |
| 149 | + "json", |
| 150 | + data_files=os.path.join(data_args.dataset_name_or_path, "train.json"), |
| 151 | + lazy=data_args.lazy, |
| 152 | + )[0] |
| 153 | + else: |
| 154 | + train_ds = None |
| 155 | + if training_args.do_eval: |
| 156 | + dev_ds = load_dataset( |
| 157 | + "json", |
| 158 | + data_files=os.path.join(data_args.dataset_name_or_path, "dev.json"), |
| 159 | + lazy=data_args.lazy, |
| 160 | + )[0] |
| 161 | + else: |
| 162 | + dev_ds = None |
| 163 | + |
| 164 | + elif os.path.exists(os.path.join(data_args.dataset_name_or_path, "train")) or os.path.exists( |
| 165 | + os.path.join(data_args.dataset_name_or_path, "dev") |
| 166 | + ): |
| 167 | + import glob |
| 168 | + |
| 169 | + if training_args.do_train: |
| 170 | + train_ds = load_dataset( |
| 171 | + "json", |
| 172 | + data_files=glob.glob(os.path.join(data_args.dataset_name_or_path, "train", "*.json")), |
| 173 | + lazy=data_args.lazy, |
| 174 | + )[0] |
| 175 | + else: |
| 176 | + train_ds = None |
| 177 | + if training_args.do_eval: |
| 178 | + dev_ds = load_dataset( |
| 179 | + "json", |
| 180 | + data_files=glob.glob(os.path.join(data_args.dataset_name_or_path, "dev", "*.json")), |
| 181 | + lazy=data_args.lazy, |
| 182 | + )[0] |
| 183 | + else: |
| 184 | + dev_ds = None |
| 185 | + |
| 186 | + else: |
| 187 | + if training_args.do_train: |
| 188 | + train_ds = load_dataset(data_args.dataset_name_or_path, splits=["train"])[0] |
| 189 | + else: |
| 190 | + train_ds = None |
| 191 | + if training_args.do_eval: |
| 192 | + dev_ds = load_dataset(data_args.dataset_name_or_path, splits=["dev"])[0] |
| 193 | + else: |
| 194 | + dev_ds = None |
| 195 | + |
| 196 | + # TODO(ZHUI & sijunhe): Temporary implementation. Generalize this logic and move to Trainer later. |
| 197 | + if training_args.resume_from_checkpoint is not None and data_args.lazy: |
| 198 | + logger.info( |
| 199 | + f"Loading from '{training_args.resume_from_checkpoint}' with `lazy=True`, manually skipping dataset and setting `ignore_data_skip` to True." |
| 200 | + ) |
| 201 | + training_args.ignore_data_skip = True |
| 202 | + state = TrainerState.load_from_json(os.path.join(training_args.resume_from_checkpoint, "trainer_state.json")) |
| 203 | + if state.trial_params is not None and "zero_padding_global_step" in state.trial_params: |
| 204 | + consumed_samples = state.trial_params["zero_padding_global_step"] |
| 205 | + else: |
| 206 | + consumed_samples = ( |
| 207 | + state.global_step |
| 208 | + * training_args.per_device_train_batch_size |
| 209 | + * training_args.gradient_accumulation_steps |
| 210 | + * training_args.dataset_world_size |
| 211 | + ) |
| 212 | + logger.info( |
| 213 | + f"Skipping the first {consumed_samples} samples to warmup the dataset from checkpoint '{training_args.resume_from_checkpoint}'." |
| 214 | + ) |
| 215 | + train_ds = train_ds.skip(consumed_samples) |
| 216 | + |
| 217 | + if train_ds is not None: |
| 218 | + train_ds = EmbeddingIterableDataset( |
| 219 | + train_ds, |
| 220 | + tokenizer, |
| 221 | + max_query_len=embedding_args.max_query_len, |
| 222 | + max_passage_len=embedding_args.max_passage_len, |
| 223 | + group_size=embedding_args.group_size, |
| 224 | + query_template=embedding_args.query_template, |
| 225 | + passage_template=embedding_args.passage_template, |
| 226 | + ) |
| 227 | + |
| 228 | + if dev_ds is not None: |
| 229 | + dev_ds = EmbeddingIterableDataset( |
| 230 | + dev_ds, |
| 231 | + tokenizer, |
| 232 | + max_query_len=embedding_args.max_query_len, |
| 233 | + max_passage_len=embedding_args.max_passage_len, |
| 234 | + group_size=embedding_args.group_size, |
| 235 | + query_template=embedding_args.query_template, |
| 236 | + passage_template=embedding_args.passage_template, |
| 237 | + ) |
| 238 | + |
| 239 | + # Create trainer |
| 240 | + if data_args.pad_to_max_length: |
| 241 | + padding = "max_length" |
| 242 | + else: |
| 243 | + padding = True |
| 244 | + |
| 245 | + data_collator_fn = DataCollatorForEmbedding( |
| 246 | + tokenizer=tokenizer, |
| 247 | + max_query_len=embedding_args.max_query_len, |
| 248 | + padding=padding, |
| 249 | + max_passage_len=embedding_args.max_passage_len, |
| 250 | + return_tensors="np", |
| 251 | + return_attention_mask=not model_args.flash_mask, |
| 252 | + pad_to_multiple_of=data_args.pad_to_multiple_of, |
| 253 | + ) |
| 254 | + trainer = EmbeddingTrainer( |
| 255 | + model=model, |
| 256 | + model_args=embedding_args, |
| 257 | + args=training_args, |
| 258 | + train_dataset=train_ds, |
| 259 | + eval_dataset=dev_ds, |
| 260 | + tokenizer=tokenizer, |
| 261 | + compute_metrics=compute_metrics, |
| 262 | + data_collator=data_collator_fn, |
| 263 | + ) |
| 264 | + trainable_parameters = [p for p in model.parameters() if not p.stop_gradient] |
| 265 | + trainer.set_optimizer_grouped_parameters(trainable_parameters) |
| 266 | + |
| 267 | + # Train |
| 268 | + if training_args.do_train: |
| 269 | + checkpoint = None |
| 270 | + if training_args.resume_from_checkpoint is not None: |
| 271 | + checkpoint = training_args.resume_from_checkpoint |
| 272 | + elif last_checkpoint is not None: |
| 273 | + checkpoint = last_checkpoint |
| 274 | + train_result = trainer.train(resume_from_checkpoint=checkpoint) |
| 275 | + trainer.save_model(merge_tensor_parallel=training_args.tensor_parallel_degree > 1) |
| 276 | + trainer.log_metrics("train", train_result.metrics) |
| 277 | + trainer.save_metrics("train", train_result.metrics) |
| 278 | + trainer.save_state() |
| 279 | + |
| 280 | + # Evaluation dev set |
| 281 | + if training_args.do_eval: |
| 282 | + logger.info("*** Evaluate result after train ***") |
| 283 | + eval_result = trainer.evaluate(dev_ds) |
| 284 | + trainer.log_metrics("eval", eval_result) |
| 285 | + |
| 286 | + |
| 287 | +if __name__ == "__main__": |
| 288 | + main() |
0 commit comments