Skip to content
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
pidTPCModule.h: Rename shadow variables
  • Loading branch information
vkucera committed Dec 11, 2025
commit 476dce61ca8056b86e21297b8b6d2d974888fddb
10 changes: 5 additions & 5 deletions Common/Tools/PID/pidTPCModule.h
Original file line number Diff line number Diff line change
Expand Up @@ -540,7 +540,7 @@ class pidTPCModule
constexpr int ExpectedInputDimensionsNNV3 = 8;
constexpr auto NetworkVersionV2 = "2";
constexpr auto NetworkVersionV3 = "3";
for (int i = 0; i < NParticleTypes; i++) { // Loop over particle number for which network correction is used
for (int j = 0; j < NParticleTypes; j++) { // Loop over particle number for which network correction is used
for (auto const& trk : tracks) {
if (!trk.hasTPC()) {
continue;
Expand All @@ -553,7 +553,7 @@ class pidTPCModule
track_properties[counter_track_props] = trk.tpcInnerParam();
track_properties[counter_track_props + 1] = trk.tgl();
track_properties[counter_track_props + 2] = trk.signed1Pt();
track_properties[counter_track_props + 3] = o2::track::pid_constants::sMasses[i];
track_properties[counter_track_props + 3] = o2::track::pid_constants::sMasses[j];
track_properties[counter_track_props + 4] = trk.has_collision() ? mults[trk.collisionId()] / 11000. : 1.;
track_properties[counter_track_props + 5] = std::sqrt(nNclNormalization / trk.tpcNClsFound());
if (input_dimensions == ExpectedInputDimensionsNNV2 && networkVersion == NetworkVersionV2) {
Expand Down Expand Up @@ -583,9 +583,9 @@ class pidTPCModule
float* output_network = network.evalModel(track_properties);
auto stop_network_eval = std::chrono::high_resolution_clock::now();
duration_network += std::chrono::duration<float, std::ratio<1, 1000000000>>(stop_network_eval - start_network_eval).count();
for (uint64_t i = 0; i < prediction_size; i += output_dimensions) {
for (int j = 0; j < output_dimensions; j++) {
network_prediction[i + j + prediction_size * loop_counter] = output_network[i + j];
for (uint64_t k = 0; k < prediction_size; k += output_dimensions) {
for (int l = 0; l < output_dimensions; l++) {
network_prediction[k + l + prediction_size * loop_counter] = output_network[k + l];
}
}

Expand Down