Skip to content
Merged
Changes from 20 commits
Commits
Show all changes
38 commits
Select commit Hold shift + click to select a range
793abb9
Add an example of embedding indexes inside a parquet file
zhuqi-lucas Jun 13, 2025
1f480ee
Add page image
zhuqi-lucas Jun 13, 2025
2a0ecac
Add prune file example
zhuqi-lucas Jun 13, 2025
4e61d0e
Fix clippy
zhuqi-lucas Jun 13, 2025
a8da658
polish code
zhuqi-lucas Jun 13, 2025
c1ab4b9
Fmt
zhuqi-lucas Jun 13, 2025
baf0311
address comments
zhuqi-lucas Jun 13, 2025
18e7028
Add debug
zhuqi-lucas Jun 13, 2025
66dc5e4
Add new example, but it will fail with page index
zhuqi-lucas Jun 14, 2025
eb9b62e
add debug
zhuqi-lucas Jun 14, 2025
310576e
add debug
zhuqi-lucas Jun 14, 2025
fbeecfe
polish
zhuqi-lucas Jun 15, 2025
88fc6a6
debug
zhuqi-lucas Jun 15, 2025
32abcb9
Using low level API to support
zhuqi-lucas Jun 18, 2025
284510c
polish
zhuqi-lucas Jun 18, 2025
0410bd8
fix
zhuqi-lucas Jun 18, 2025
56ad7f6
Merge remote-tracking branch 'upstream/main' into embedding_indexes
zhuqi-lucas Jun 18, 2025
12ce9c2
merge
zhuqi-lucas Jun 18, 2025
0c093ac
fix
zhuqi-lucas Jun 18, 2025
a789084
Merge remote-tracking branch 'upstream/main' into embedding_indexes
zhuqi-lucas Jun 18, 2025
9c75814
complte solution
zhuqi-lucas Jun 19, 2025
13c1706
Merge remote-tracking branch 'upstream/main' into embedding_indexes
zhuqi-lucas Jun 19, 2025
06d6f08
polish comments
zhuqi-lucas Jun 19, 2025
6bd7d3e
adjust image
zhuqi-lucas Jun 19, 2025
23d7125
add comments part 1
zhuqi-lucas Jun 20, 2025
13b74ac
pin to new arrow-rs
zhuqi-lucas Jun 21, 2025
1b0501c
pin to new arrow-rs
zhuqi-lucas Jun 21, 2025
c344843
add comments part 2
zhuqi-lucas Jun 21, 2025
b0dc1b4
merge upstream
zhuqi-lucas Jul 1, 2025
f848a11
Merge remote-tracking branch 'upstream/main' into embedding_indexes
zhuqi-lucas Jul 1, 2025
2c5c362
merge upstream
zhuqi-lucas Jul 1, 2025
f808980
polish code
zhuqi-lucas Jul 1, 2025
a76b5c6
Rename example and add it to the list
alamb Jul 1, 2025
e7389ea
Merge remote-tracking branch 'apache/main' into embedding_indexes
alamb Jul 1, 2025
13ac3bb
Work on comments
alamb Jul 1, 2025
d7d4324
More documentation
alamb Jul 2, 2025
54a9e61
Documentation obession, encapsulate example
alamb Jul 2, 2025
95c0d59
Update datafusion-examples/examples/parquet_embedded_index.rs
alamb Jul 2, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
363 changes: 363 additions & 0 deletions datafusion-examples/examples/embedding_parquet_indexes.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,363 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

//! Example: embedding a "distinct values" index in a Parquet file's metadata
//!
//! 1. Read existing Parquet files
//! 2. Compute distinct values for a target column using DataFusion
//! 3. Serialize the distinct index to bytes and write to the new Parquet file
//! with these encoded bytes appended as a custom metadata entry
//! 4. Read each new parquet file, extract and deserialize the index from footer
//! 5. Use the distinct index to prune files when querying

use arrow::array::{ArrayRef, StringArray};
use arrow::record_batch::RecordBatch;
use arrow_schema::{DataType, Field, Schema, SchemaRef};
use async_trait::async_trait;
use datafusion::catalog::{Session, TableProvider};
use datafusion::common::{HashMap, HashSet, Result};
use datafusion::datasource::listing::PartitionedFile;
use datafusion::datasource::memory::DataSourceExec;
use datafusion::datasource::physical_plan::{FileScanConfigBuilder, ParquetSource};
use datafusion::datasource::TableType;
use datafusion::execution::object_store::ObjectStoreUrl;
use datafusion::logical_expr::{Operator, TableProviderFilterPushDown};
use datafusion::parquet::arrow::ArrowSchemaConverter;
use datafusion::parquet::data_type::{ByteArray, ByteArrayType};
use datafusion::parquet::errors::ParquetError;
use datafusion::parquet::file::metadata::KeyValue;
use datafusion::parquet::file::properties::WriterProperties;
use datafusion::parquet::file::reader::{FileReader, SerializedFileReader};
use datafusion::parquet::file::writer::SerializedFileWriter;
use datafusion::physical_plan::ExecutionPlan;
use datafusion::prelude::*;
use datafusion::scalar::ScalarValue;
use std::fs::{create_dir_all, read_dir, File};
use std::io::{Read, Seek, SeekFrom, Write};
use std::path::{Path, PathBuf};
use std::sync::Arc;
use tempfile::TempDir;

/// We should disable page index support in the Parquet reader
/// when we enable this feature, since we are using a custom index.
///
/// Example creating the parquet file that
/// contains specialized indexes that
/// are ignored by other readers
///
/// ```text
/// ┌──────────────────────┐
/// │┌───────────────────┐ │
/// ││ DataPage │ │ Standard Parquet
/// │└───────────────────┘ │ Data / pages
/// │┌───────────────────┐ │
/// ││ DataPage │ │
/// │└───────────────────┘ │
/// │ ... │
/// │ │
/// │┌───────────────────┐ │
/// ││ DataPage │ │
/// │└───────────────────┘ │
/// │┏━━━━━━━━━━━━━━━━━━━┓ │
/// │┃ ┃ │ key/value metadata
/// │┃ Special Index ┃◀┼──── that points at the
/// │┃ ┃ │ │ special index
/// │┗━━━━━━━━━━━━━━━━━━━┛ │
/// │╔═══════════════════╗ │ │
/// │║ ║ │
/// │║ Parquet Footer ║ │ │ Footer includes
/// │║ ║ ┼────── thrift-encoded
/// │║ ║ │ ParquetMetadata
/// │╚═══════════════════╝ │
/// └──────────────────────┘
///
/// Parquet File
/// ```
/// DistinctIndexTable is a custom TableProvider that reads Parquet files
#[derive(Debug)]
struct DistinctIndexTable {
schema: SchemaRef,
index: HashMap<String, HashSet<String>>,
dir: PathBuf,
}

impl DistinctIndexTable {
/// Scan a directory, read each file's footer metadata into a map
fn try_new(dir: impl Into<PathBuf>, schema: SchemaRef) -> Result<Self> {
let dir = dir.into();
let mut index = HashMap::new();

for entry in read_dir(&dir)? {
let path = entry?.path();
if path.extension().and_then(|s| s.to_str()) != Some("parquet") {
continue;
}
let file_name = path.file_name().unwrap().to_string_lossy().to_string();

let distinct_set = read_distinct_index(&path)?;

println!("Read distinct index for {file_name}: {file_name:?}");
index.insert(file_name, distinct_set);
}

Ok(Self { schema, index, dir })
}
}

pub struct IndexedParquetWriter<W: Write + Seek> {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I wonder if the example would be simpler if it used ArrowWriter directly? It is not super clear to me why this example needs to use the lower level APIs directly

Or if it needs to use the lower level APIs it probably would be good to explain why you can't use the normal Arrow writer here directly

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank you @alamb , this is a very good point, i was using low level because we don't have consistent buf API, but now we have, i will try to use ArrowWriter in follow-up try!

writer: SerializedFileWriter<W>,
}

impl<W: Write + Seek + Send> IndexedParquetWriter<W> {
pub fn try_new(
sink: W,
schema: Arc<Schema>,
props: WriterProperties,
) -> Result<Self> {
let schema_desc = ArrowSchemaConverter::new().convert(schema.as_ref())?;
let props_ptr = Arc::new(props);
let writer =
SerializedFileWriter::new(sink, schema_desc.root_schema_ptr(), props_ptr)?;
Ok(Self { writer })
}
}

/// Magic bytes to identify our custom index format
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

A small software engineering suggestion would be to encapsulate the custom distinct index into a struct to make it perhaps clearer what was specific to that index and what was required parquet plumbing

Something like

struct DistinctIndex {
  inner: HashSet<String>,
}

impl DistinctIndex {
  // serialize the distinct index to a writer
  fn serialize<W: Write>(&self) -> Result<()> { ... }

  // create a new distinct index from the specified bytes
  fn new_from_bytes(serialized: &[u8]) -> Result<Self> {.. }
}

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank you @alamb! This is really a better way, perfect!

const INDEX_MAGIC: &[u8] = b"IDX1";

fn write_file_with_index(path: &Path, values: &[&str]) -> Result<()> {
let field = Field::new("category", DataType::Utf8, false);
let schema = Arc::new(Schema::new(vec![field.clone()]));
let arr: ArrayRef = Arc::new(StringArray::from(values.to_vec()));
let batch = RecordBatch::try_new(schema.clone(), vec![arr])?;

let distinct: HashSet<_> = values.iter().copied().collect();
let serialized = distinct.into_iter().collect::<Vec<_>>().join("\n");
let index_bytes = serialized.into_bytes();

let props = WriterProperties::builder().build();
let file = File::create(path)?;

let mut writer = IndexedParquetWriter::try_new(file, schema.clone(), props)?;

// Write data to the Parquet file, we only write one column since our schema has one field
{
let mut rg_writer = writer.writer.next_row_group()?;
let mut ser_col_writer = rg_writer
.next_column()?
.ok_or_else(|| ParquetError::General("No column writer".into()))?;

let col_writer = ser_col_writer.typed::<ByteArrayType>();
let values_bytes: Vec<ByteArray> = batch
.column(0)
.as_any()
.downcast_ref::<StringArray>()
.unwrap()
.iter()
.map(|opt| ByteArray::from(opt.unwrap()))
.collect();

println!("Writing values: {values_bytes:?}");
col_writer.write_batch(&values_bytes, None, None)?;
ser_col_writer.close()?;
rg_writer.close()?;
}

let offset = writer.writer.inner().stream_position()?;
let index_len = index_bytes.len() as u64;

// Write the index magic and length to the file
writer.writer.inner().write_all(b"IDX1")?;
writer.writer.inner().write_all(&index_len.to_le_bytes())?;

// Write the index bytes
writer.writer.inner().write_all(&index_bytes)?;

// Append metadata about the index to the Parquet file footer
writer.writer.append_key_value_metadata(KeyValue::new(
"distinct_index_offset".to_string(),
offset.to_string(),
));
writer.writer.append_key_value_metadata(KeyValue::new(
"distinct_index_length".to_string(),
index_bytes.len().to_string(),
));

writer.writer.close()?;

println!("Finished writing file to {}", path.display());
Ok(())
}

fn read_distinct_index(path: &Path) -> Result<HashSet<String>, ParquetError> {
let mut file = File::open(path)?;

let file_size = file.metadata()?.len();
println!(
"Reading index from {} (size: {})",
path.display(),
file_size
);

let reader = SerializedFileReader::new(file.try_clone()?)?;
let meta = reader.metadata().file_metadata();

let offset = meta
.key_value_metadata()
.and_then(|kvs| kvs.iter().find(|kv| kv.key == "distinct_index_offset"))
.and_then(|kv| kv.value.as_ref())
.ok_or_else(|| ParquetError::General("Missing index offset".into()))?
.parse::<u64>()
.map_err(|e| ParquetError::General(e.to_string()))?;

let length = meta
.key_value_metadata()
.and_then(|kvs| kvs.iter().find(|kv| kv.key == "distinct_index_length"))
.and_then(|kv| kv.value.as_ref())
.ok_or_else(|| ParquetError::General("Missing index length".into()))?
.parse::<usize>()
.map_err(|e| ParquetError::General(e.to_string()))?;

println!("Reading index at offset: {offset}, length: {length}");

file.seek(SeekFrom::Start(offset))?;

let mut magic_buf = [0u8; 4];
file.read_exact(&mut magic_buf)?;
if magic_buf != INDEX_MAGIC {
return Err(ParquetError::General("Invalid index magic".into()));
}

let mut len_buf = [0u8; 8];
file.read_exact(&mut len_buf)?;
let stored_len = u64::from_le_bytes(len_buf) as usize;

if stored_len != length {
return Err(ParquetError::General("Index length mismatch".into()));
}

let mut index_buf = vec![0u8; length];
file.read_exact(&mut index_buf)?;

let s =
String::from_utf8(index_buf).map_err(|e| ParquetError::General(e.to_string()))?;

Ok(s.lines().map(|s| s.to_string()).collect())
}

/// Implement TableProvider for DistinctIndexTable, using the distinct index to prune files
#[async_trait]
impl TableProvider for DistinctIndexTable {
fn as_any(&self) -> &dyn std::any::Any {
self
}
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
fn table_type(&self) -> TableType {
TableType::Base
}

/// Prune files before reading: only keep files whose distinct set contains the filter value
async fn scan(
&self,
_ctx: &dyn Session,
_proj: Option<&Vec<usize>>,
filters: &[Expr],
_limit: Option<usize>,
) -> Result<Arc<dyn ExecutionPlan>> {
// Look for a single `category = 'X'` filter
let mut target: Option<String> = None;

if filters.len() == 1 {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You can also potentially use PruningPredicate::literal_guarantee to do this analysis rather than repeating it here

However, doing this walk explicitly in the example might also be a good idea to show how it could be done generall

if let Expr::BinaryExpr(expr) = &filters[0] {
if expr.op == Operator::Eq {
if let (
Expr::Column(c),
Expr::Literal(ScalarValue::Utf8(Some(v)), _),
) = (&*expr.left, &*expr.right)
{
if c.name == "category" {
println!("Filtering for category: {v}");
target = Some(v.clone());
}
}
}
}
}
// Determine which files to scan
let keep: Vec<String> = self
.index
.iter()
.filter(|(_f, set)| target.as_ref().is_none_or(|v| set.contains(v)))
.map(|(f, _)| f.clone())
.collect();

println!("Pruned files: {:?}", keep.clone());

// Build ParquetSource for kept files
let url = ObjectStoreUrl::parse("file://")?;

// Note: we disable page index support here since we are using a custom index, it has conflicts when testing.
// TODO: Remove this when we have a better solution for custom indexes with page index support.
let source = Arc::new(ParquetSource::default().with_enable_page_index(false));
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank you @alamb Currently, i disable the page index for reading, so this example will succeed, but if we enable page index, it will fail due to:

  1. We are writing the self defined index just after the data.
  2. But it seems, the page index offset info will write to the same place.
  3. I can't find a solution until now, need some help.

Thanks!

let mut builder = FileScanConfigBuilder::new(url, self.schema.clone(), source);
for file in keep {
let path = self.dir.join(&file);
let len = std::fs::metadata(&path)?.len();
builder = builder.with_file(PartitionedFile::new(
path.to_str().unwrap().to_string(),
len,
));
}
Ok(DataSourceExec::from_data_source(builder.build()))
}

fn supports_filters_pushdown(
&self,
fs: &[&Expr],
) -> Result<Vec<TableProviderFilterPushDown>> {
// Mark as inexact since pruning is file‑granular
Ok(vec![TableProviderFilterPushDown::Inexact; fs.len()])
}
}

#[tokio::main]
async fn main() -> Result<()> {
// 1. Create temp dir and write 3 Parquet files with different category sets
let tmp = TempDir::new()?;
let dir = tmp.path();
create_dir_all(dir)?;
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

BTW I also double checked that these files can be read by duckdb, and the had no problems:

D select * from read_parquet('/tmp/parquet_index_data/*');
┌──────────┐
│ category │
│ varchar  │
├──────────┤
│ foo      │
│ bar      │
│ foo      │
│ baz      │
│ qux      │
│ foo      │
│ quux     │
│ quux     │
└──────────┘

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank you @alamb for the crossing checking! This is very valuable!

write_file_with_index(&dir.join("a.parquet"), &["foo", "bar", "foo"])?;
write_file_with_index(&dir.join("b.parquet"), &["baz", "qux"])?;
write_file_with_index(&dir.join("c.parquet"), &["foo", "quux", "quux"])?;

// 2. Register our custom TableProvider
let field = Field::new("category", DataType::Utf8, false);
let schema_ref = Arc::new(Schema::new(vec![field]));
let provider = Arc::new(DistinctIndexTable::try_new(dir, schema_ref.clone())?);

let ctx = SessionContext::new();

ctx.register_table("t", provider)?;

// 3. Run a query: only files containing 'foo' get scanned
let df = ctx.sql("SELECT * FROM t WHERE category = 'foo'").await?;
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

that is very cool

df.show().await?;

Ok(())
}