-
Notifications
You must be signed in to change notification settings - Fork 2k
Add an example of embedding indexes inside a parquet file #16395
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 20 commits
793abb9
1f480ee
2a0ecac
4e61d0e
a8da658
c1ab4b9
baf0311
18e7028
66dc5e4
eb9b62e
310576e
fbeecfe
88fc6a6
32abcb9
284510c
0410bd8
56ad7f6
12ce9c2
0c093ac
a789084
9c75814
13c1706
06d6f08
6bd7d3e
23d7125
13b74ac
1b0501c
c344843
b0dc1b4
f848a11
2c5c362
f808980
a76b5c6
e7389ea
13ac3bb
d7d4324
54a9e61
95c0d59
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,363 @@ | ||
| // Licensed to the Apache Software Foundation (ASF) under one | ||
| // or more contributor license agreements. See the NOTICE file | ||
| // distributed with this work for additional information | ||
| // regarding copyright ownership. The ASF licenses this file | ||
| // to you under the Apache License, Version 2.0 (the | ||
| // "License"); you may not use this file except in compliance | ||
| // with the License. You may obtain a copy of the License at | ||
| // | ||
| // http://www.apache.org/licenses/LICENSE-2.0 | ||
| // | ||
| // Unless required by applicable law or agreed to in writing, | ||
| // software distributed under the License is distributed on an | ||
| // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
| // KIND, either express or implied. See the License for the | ||
| // specific language governing permissions and limitations | ||
| // under the License. | ||
|
|
||
| //! Example: embedding a "distinct values" index in a Parquet file's metadata | ||
| //! | ||
| //! 1. Read existing Parquet files | ||
| //! 2. Compute distinct values for a target column using DataFusion | ||
| //! 3. Serialize the distinct index to bytes and write to the new Parquet file | ||
| //! with these encoded bytes appended as a custom metadata entry | ||
| //! 4. Read each new parquet file, extract and deserialize the index from footer | ||
| //! 5. Use the distinct index to prune files when querying | ||
|
|
||
| use arrow::array::{ArrayRef, StringArray}; | ||
| use arrow::record_batch::RecordBatch; | ||
| use arrow_schema::{DataType, Field, Schema, SchemaRef}; | ||
| use async_trait::async_trait; | ||
| use datafusion::catalog::{Session, TableProvider}; | ||
| use datafusion::common::{HashMap, HashSet, Result}; | ||
| use datafusion::datasource::listing::PartitionedFile; | ||
| use datafusion::datasource::memory::DataSourceExec; | ||
| use datafusion::datasource::physical_plan::{FileScanConfigBuilder, ParquetSource}; | ||
| use datafusion::datasource::TableType; | ||
| use datafusion::execution::object_store::ObjectStoreUrl; | ||
| use datafusion::logical_expr::{Operator, TableProviderFilterPushDown}; | ||
| use datafusion::parquet::arrow::ArrowSchemaConverter; | ||
| use datafusion::parquet::data_type::{ByteArray, ByteArrayType}; | ||
| use datafusion::parquet::errors::ParquetError; | ||
| use datafusion::parquet::file::metadata::KeyValue; | ||
| use datafusion::parquet::file::properties::WriterProperties; | ||
| use datafusion::parquet::file::reader::{FileReader, SerializedFileReader}; | ||
| use datafusion::parquet::file::writer::SerializedFileWriter; | ||
| use datafusion::physical_plan::ExecutionPlan; | ||
| use datafusion::prelude::*; | ||
| use datafusion::scalar::ScalarValue; | ||
| use std::fs::{create_dir_all, read_dir, File}; | ||
| use std::io::{Read, Seek, SeekFrom, Write}; | ||
| use std::path::{Path, PathBuf}; | ||
| use std::sync::Arc; | ||
| use tempfile::TempDir; | ||
|
|
||
| /// We should disable page index support in the Parquet reader | ||
| /// when we enable this feature, since we are using a custom index. | ||
| /// | ||
| /// Example creating the parquet file that | ||
| /// contains specialized indexes that | ||
| /// are ignored by other readers | ||
| /// | ||
| /// ```text | ||
| /// ┌──────────────────────┐ | ||
| /// │┌───────────────────┐ │ | ||
| /// ││ DataPage │ │ Standard Parquet | ||
| /// │└───────────────────┘ │ Data / pages | ||
| /// │┌───────────────────┐ │ | ||
| /// ││ DataPage │ │ | ||
| /// │└───────────────────┘ │ | ||
| /// │ ... │ | ||
| /// │ │ | ||
| /// │┌───────────────────┐ │ | ||
| /// ││ DataPage │ │ | ||
| /// │└───────────────────┘ │ | ||
| /// │┏━━━━━━━━━━━━━━━━━━━┓ │ | ||
| /// │┃ ┃ │ key/value metadata | ||
| /// │┃ Special Index ┃◀┼──── that points at the | ||
| /// │┃ ┃ │ │ special index | ||
| /// │┗━━━━━━━━━━━━━━━━━━━┛ │ | ||
| /// │╔═══════════════════╗ │ │ | ||
| /// │║ ║ │ | ||
| /// │║ Parquet Footer ║ │ │ Footer includes | ||
| /// │║ ║ ┼────── thrift-encoded | ||
| /// │║ ║ │ ParquetMetadata | ||
| /// │╚═══════════════════╝ │ | ||
| /// └──────────────────────┘ | ||
| /// | ||
| /// Parquet File | ||
| /// ``` | ||
| /// DistinctIndexTable is a custom TableProvider that reads Parquet files | ||
| #[derive(Debug)] | ||
| struct DistinctIndexTable { | ||
| schema: SchemaRef, | ||
| index: HashMap<String, HashSet<String>>, | ||
| dir: PathBuf, | ||
| } | ||
|
|
||
| impl DistinctIndexTable { | ||
| /// Scan a directory, read each file's footer metadata into a map | ||
| fn try_new(dir: impl Into<PathBuf>, schema: SchemaRef) -> Result<Self> { | ||
| let dir = dir.into(); | ||
| let mut index = HashMap::new(); | ||
|
|
||
| for entry in read_dir(&dir)? { | ||
| let path = entry?.path(); | ||
| if path.extension().and_then(|s| s.to_str()) != Some("parquet") { | ||
| continue; | ||
| } | ||
| let file_name = path.file_name().unwrap().to_string_lossy().to_string(); | ||
|
|
||
| let distinct_set = read_distinct_index(&path)?; | ||
|
|
||
| println!("Read distinct index for {file_name}: {file_name:?}"); | ||
| index.insert(file_name, distinct_set); | ||
| } | ||
|
|
||
| Ok(Self { schema, index, dir }) | ||
| } | ||
| } | ||
|
|
||
| pub struct IndexedParquetWriter<W: Write + Seek> { | ||
| writer: SerializedFileWriter<W>, | ||
| } | ||
|
|
||
| impl<W: Write + Seek + Send> IndexedParquetWriter<W> { | ||
| pub fn try_new( | ||
| sink: W, | ||
| schema: Arc<Schema>, | ||
| props: WriterProperties, | ||
| ) -> Result<Self> { | ||
| let schema_desc = ArrowSchemaConverter::new().convert(schema.as_ref())?; | ||
| let props_ptr = Arc::new(props); | ||
| let writer = | ||
| SerializedFileWriter::new(sink, schema_desc.root_schema_ptr(), props_ptr)?; | ||
| Ok(Self { writer }) | ||
| } | ||
| } | ||
|
|
||
| /// Magic bytes to identify our custom index format | ||
|
||
| const INDEX_MAGIC: &[u8] = b"IDX1"; | ||
|
|
||
| fn write_file_with_index(path: &Path, values: &[&str]) -> Result<()> { | ||
| let field = Field::new("category", DataType::Utf8, false); | ||
| let schema = Arc::new(Schema::new(vec![field.clone()])); | ||
| let arr: ArrayRef = Arc::new(StringArray::from(values.to_vec())); | ||
| let batch = RecordBatch::try_new(schema.clone(), vec![arr])?; | ||
|
|
||
| let distinct: HashSet<_> = values.iter().copied().collect(); | ||
| let serialized = distinct.into_iter().collect::<Vec<_>>().join("\n"); | ||
| let index_bytes = serialized.into_bytes(); | ||
|
|
||
| let props = WriterProperties::builder().build(); | ||
| let file = File::create(path)?; | ||
|
|
||
| let mut writer = IndexedParquetWriter::try_new(file, schema.clone(), props)?; | ||
|
|
||
| // Write data to the Parquet file, we only write one column since our schema has one field | ||
| { | ||
| let mut rg_writer = writer.writer.next_row_group()?; | ||
| let mut ser_col_writer = rg_writer | ||
| .next_column()? | ||
| .ok_or_else(|| ParquetError::General("No column writer".into()))?; | ||
|
|
||
| let col_writer = ser_col_writer.typed::<ByteArrayType>(); | ||
| let values_bytes: Vec<ByteArray> = batch | ||
| .column(0) | ||
| .as_any() | ||
| .downcast_ref::<StringArray>() | ||
| .unwrap() | ||
| .iter() | ||
| .map(|opt| ByteArray::from(opt.unwrap())) | ||
| .collect(); | ||
|
|
||
| println!("Writing values: {values_bytes:?}"); | ||
| col_writer.write_batch(&values_bytes, None, None)?; | ||
| ser_col_writer.close()?; | ||
| rg_writer.close()?; | ||
| } | ||
|
|
||
| let offset = writer.writer.inner().stream_position()?; | ||
| let index_len = index_bytes.len() as u64; | ||
|
|
||
| // Write the index magic and length to the file | ||
| writer.writer.inner().write_all(b"IDX1")?; | ||
| writer.writer.inner().write_all(&index_len.to_le_bytes())?; | ||
|
|
||
| // Write the index bytes | ||
| writer.writer.inner().write_all(&index_bytes)?; | ||
|
|
||
| // Append metadata about the index to the Parquet file footer | ||
| writer.writer.append_key_value_metadata(KeyValue::new( | ||
| "distinct_index_offset".to_string(), | ||
| offset.to_string(), | ||
| )); | ||
| writer.writer.append_key_value_metadata(KeyValue::new( | ||
| "distinct_index_length".to_string(), | ||
| index_bytes.len().to_string(), | ||
| )); | ||
|
|
||
| writer.writer.close()?; | ||
|
|
||
| println!("Finished writing file to {}", path.display()); | ||
| Ok(()) | ||
| } | ||
|
|
||
| fn read_distinct_index(path: &Path) -> Result<HashSet<String>, ParquetError> { | ||
| let mut file = File::open(path)?; | ||
|
|
||
| let file_size = file.metadata()?.len(); | ||
| println!( | ||
| "Reading index from {} (size: {})", | ||
| path.display(), | ||
| file_size | ||
| ); | ||
|
|
||
| let reader = SerializedFileReader::new(file.try_clone()?)?; | ||
| let meta = reader.metadata().file_metadata(); | ||
|
|
||
| let offset = meta | ||
| .key_value_metadata() | ||
| .and_then(|kvs| kvs.iter().find(|kv| kv.key == "distinct_index_offset")) | ||
| .and_then(|kv| kv.value.as_ref()) | ||
| .ok_or_else(|| ParquetError::General("Missing index offset".into()))? | ||
| .parse::<u64>() | ||
| .map_err(|e| ParquetError::General(e.to_string()))?; | ||
|
|
||
| let length = meta | ||
| .key_value_metadata() | ||
| .and_then(|kvs| kvs.iter().find(|kv| kv.key == "distinct_index_length")) | ||
| .and_then(|kv| kv.value.as_ref()) | ||
| .ok_or_else(|| ParquetError::General("Missing index length".into()))? | ||
| .parse::<usize>() | ||
| .map_err(|e| ParquetError::General(e.to_string()))?; | ||
|
|
||
| println!("Reading index at offset: {offset}, length: {length}"); | ||
|
|
||
| file.seek(SeekFrom::Start(offset))?; | ||
|
|
||
| let mut magic_buf = [0u8; 4]; | ||
| file.read_exact(&mut magic_buf)?; | ||
| if magic_buf != INDEX_MAGIC { | ||
| return Err(ParquetError::General("Invalid index magic".into())); | ||
| } | ||
|
|
||
| let mut len_buf = [0u8; 8]; | ||
| file.read_exact(&mut len_buf)?; | ||
| let stored_len = u64::from_le_bytes(len_buf) as usize; | ||
|
|
||
| if stored_len != length { | ||
| return Err(ParquetError::General("Index length mismatch".into())); | ||
| } | ||
|
|
||
| let mut index_buf = vec![0u8; length]; | ||
| file.read_exact(&mut index_buf)?; | ||
|
|
||
| let s = | ||
| String::from_utf8(index_buf).map_err(|e| ParquetError::General(e.to_string()))?; | ||
|
|
||
| Ok(s.lines().map(|s| s.to_string()).collect()) | ||
| } | ||
|
|
||
| /// Implement TableProvider for DistinctIndexTable, using the distinct index to prune files | ||
| #[async_trait] | ||
| impl TableProvider for DistinctIndexTable { | ||
| fn as_any(&self) -> &dyn std::any::Any { | ||
| self | ||
| } | ||
| fn schema(&self) -> SchemaRef { | ||
| self.schema.clone() | ||
| } | ||
| fn table_type(&self) -> TableType { | ||
| TableType::Base | ||
| } | ||
|
|
||
| /// Prune files before reading: only keep files whose distinct set contains the filter value | ||
| async fn scan( | ||
| &self, | ||
| _ctx: &dyn Session, | ||
| _proj: Option<&Vec<usize>>, | ||
| filters: &[Expr], | ||
| _limit: Option<usize>, | ||
| ) -> Result<Arc<dyn ExecutionPlan>> { | ||
| // Look for a single `category = 'X'` filter | ||
| let mut target: Option<String> = None; | ||
|
|
||
| if filters.len() == 1 { | ||
|
||
| if let Expr::BinaryExpr(expr) = &filters[0] { | ||
| if expr.op == Operator::Eq { | ||
| if let ( | ||
| Expr::Column(c), | ||
| Expr::Literal(ScalarValue::Utf8(Some(v)), _), | ||
| ) = (&*expr.left, &*expr.right) | ||
| { | ||
| if c.name == "category" { | ||
| println!("Filtering for category: {v}"); | ||
| target = Some(v.clone()); | ||
| } | ||
| } | ||
| } | ||
| } | ||
| } | ||
| // Determine which files to scan | ||
| let keep: Vec<String> = self | ||
| .index | ||
| .iter() | ||
| .filter(|(_f, set)| target.as_ref().is_none_or(|v| set.contains(v))) | ||
| .map(|(f, _)| f.clone()) | ||
| .collect(); | ||
|
|
||
| println!("Pruned files: {:?}", keep.clone()); | ||
|
|
||
| // Build ParquetSource for kept files | ||
| let url = ObjectStoreUrl::parse("file://")?; | ||
|
|
||
| // Note: we disable page index support here since we are using a custom index, it has conflicts when testing. | ||
| // TODO: Remove this when we have a better solution for custom indexes with page index support. | ||
| let source = Arc::new(ParquetSource::default().with_enable_page_index(false)); | ||
|
||
| let mut builder = FileScanConfigBuilder::new(url, self.schema.clone(), source); | ||
| for file in keep { | ||
| let path = self.dir.join(&file); | ||
| let len = std::fs::metadata(&path)?.len(); | ||
| builder = builder.with_file(PartitionedFile::new( | ||
| path.to_str().unwrap().to_string(), | ||
| len, | ||
| )); | ||
| } | ||
| Ok(DataSourceExec::from_data_source(builder.build())) | ||
| } | ||
|
|
||
| fn supports_filters_pushdown( | ||
| &self, | ||
| fs: &[&Expr], | ||
| ) -> Result<Vec<TableProviderFilterPushDown>> { | ||
| // Mark as inexact since pruning is file‑granular | ||
| Ok(vec![TableProviderFilterPushDown::Inexact; fs.len()]) | ||
| } | ||
| } | ||
|
|
||
| #[tokio::main] | ||
| async fn main() -> Result<()> { | ||
| // 1. Create temp dir and write 3 Parquet files with different category sets | ||
| let tmp = TempDir::new()?; | ||
| let dir = tmp.path(); | ||
| create_dir_all(dir)?; | ||
|
||
| write_file_with_index(&dir.join("a.parquet"), &["foo", "bar", "foo"])?; | ||
| write_file_with_index(&dir.join("b.parquet"), &["baz", "qux"])?; | ||
| write_file_with_index(&dir.join("c.parquet"), &["foo", "quux", "quux"])?; | ||
|
|
||
| // 2. Register our custom TableProvider | ||
| let field = Field::new("category", DataType::Utf8, false); | ||
| let schema_ref = Arc::new(Schema::new(vec![field])); | ||
| let provider = Arc::new(DistinctIndexTable::try_new(dir, schema_ref.clone())?); | ||
|
|
||
| let ctx = SessionContext::new(); | ||
|
|
||
| ctx.register_table("t", provider)?; | ||
|
|
||
| // 3. Run a query: only files containing 'foo' get scanned | ||
| let df = ctx.sql("SELECT * FROM t WHERE category = 'foo'").await?; | ||
|
||
| df.show().await?; | ||
|
|
||
| Ok(()) | ||
| } | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I wonder if the example would be simpler if it used
ArrowWriterdirectly? It is not super clear to me why this example needs to use the lower level APIs directlyOr if it needs to use the lower level APIs it probably would be good to explain why you can't use the normal Arrow writer here directly
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thank you @alamb , this is a very good point, i was using low level because we don't have consistent buf API, but now we have, i will try to use ArrowWriter in follow-up try!