Skip to content
@bcmi

BCMI

Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.

Pinned Loading

  1. Awesome-Image-Composition Awesome-Image-Composition Public

    A curated list of papers, code and resources pertaining to image composition/compositing or object insertion/addition/compositing, which aims to generate realistic composite image.

    1.1k 96

  2. libcom libcom Public

    Image composition toolbox: everything you want to know about image composition or object insertion

    Python 703 51

  3. Image-Harmonization-Dataset-iHarmony4 Image-Harmonization-Dataset-iHarmony4 Public

    [CVPR 2020] The first large-scale public benchmark dataset for image harmonization. The code used in our paper "DoveNet: Deep Image Harmonization via Domain Verification", CVPR2020. Useful for imag…

    MATLAB 801 95

  4. Object-Shadow-Generation-Dataset-DESOBAv2 Object-Shadow-Generation-Dataset-DESOBAv2 Public

    [CVPR 2024] The dataset, code, and model for our paper "Shadow Generation for Composite Image Using Diffusion Model", CVPR, 2024.

    Python 154 14

  5. GracoNet-Object-Placement GracoNet-Object-Placement Public

    [ECCV 2022] Official code for "Learning Object Placement via Dual-path Graph Completion"

    Python 100 8

  6. ControlCom-Image-Composition ControlCom-Image-Composition Public

    A controllable image composition model which could be used for image blending, image harmonization, view synthesis.

    Python 184 10

Repositories

Showing 10 of 79 repositories
  • bcmi/Awesome-Few-Shot-Defect-Image-Generation’s past year of commit activity
    4 0 0 0 Updated Jan 8, 2026
  • Granular-GRPO Public

    Fine-Grained GRPO for Precise Preference Alignment in Flow Models

    bcmi/Granular-GRPO’s past year of commit activity
    Python 46 Apache-2.0 0 0 0 Updated Jan 7, 2026
  • Image-Harmonization-Dataset-iHarmony4 Public

    [CVPR 2020] The first large-scale public benchmark dataset for image harmonization. The code used in our paper "DoveNet: Deep Image Harmonization via Domain Verification", CVPR2020. Useful for image harmonization, image composition, etc.

    bcmi/Image-Harmonization-Dataset-iHarmony4’s past year of commit activity
    MATLAB 801 MIT 95 0 0 Updated Jan 6, 2026
  • bcmi/OSInsert-Image-Composition’s past year of commit activity
    0 0 0 0 Updated Jan 1, 2026
  • Awesome-Generative-Image-Composition Public

    A curated list of papers, code, and resources pertaining to generative image composition or object insertion.

    bcmi/Awesome-Generative-Image-Composition’s past year of commit activity
    Python 147 7 0 0 Updated Dec 30, 2025
  • libcom Public

    Image composition toolbox: everything you want to know about image composition or object insertion

    bcmi/libcom’s past year of commit activity
    Python 703 Apache-2.0 51 0 0 Updated Dec 27, 2025
  • FOPA-Fast-Object-Placement-Assessment Public

    A discriminative object placement approach

    bcmi/FOPA-Fast-Object-Placement-Assessment’s past year of commit activity
    Python 36 MIT 0 1 0 Updated Nov 29, 2025
  • Object-Placement-Assessment-Dataset-OPA Public

    The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

    bcmi/Object-Placement-Assessment-Dataset-OPA’s past year of commit activity
    Python 82 MIT 4 0 0 Updated Nov 29, 2025
  • MadisNet-Inharmonious-Region-Localization Public

    [AAAI 2022] MadisNet: Inharmonious Region Localization by Magnifying Domain Discrepancy

    bcmi/MadisNet-Inharmonious-Region-Localization’s past year of commit activity
    Python 18 0 1 0 Updated Nov 29, 2025
  • BargainNet-Image-Harmonization Public

    BargainNet: Background-Guided Domain Translation for Image Harmonization. Useful for Image harmonization, image composition, etc.

    bcmi/BargainNet-Image-Harmonization’s past year of commit activity
    Python 77 MIT 5 0 0 Updated Nov 29, 2025

People

This organization has no public members. You must be a member to see who’s a part of this organization.